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Broad Learning Based on Subgraph Sheiie
Networks for Graph Classification
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and Guanrong Chen

Abstract Many real-world systems can be naturally represented by networks, such
as biological networks, collaboration networks, software networks, social networks,
etc., where subgraphs or motifs can be considered as network building blocks with
particular functions to capture mesoscopic structures. Most existing studies ignored
the interaction between these subgraphs, which could be of particular importance
to represent the global structure at the subgraph level. In this chapter, the concept
of subgraph network (SGN) is introduced and applied to network models, with
algorithms designed for constructing the 1st-order and 2nd-order SGNss, which can
be easily extended to build higher-order ones. Furthermore, these SGNs are used to
expand the structural feature space of the underlying network, beneficial for network
classification. The experiments demonstrate that the structural features of SGNs can
complement that of the original network for better network classification. However,
SGN model lacks diversity and is of high time-complexity, making it difficult to
be widely applied in practice. Then, sampling strategies are introduced into SGNs
and a novel sampling subgraph network (S?GN) model is designed, which is scale-
controllable and of higher diversity. Further, a broad learning system (BLS) is
introduced into graph classification, which fully utilizes the information provided by
the S’GN's of different sampling strategies and thus can capture various aspects of
the network structure more efficiently. Extensive experiments demonstrate that, by
comparing with the SGN model, the S?GN model has much lower time-complexity,
which together with BLS can enhance various graph classification methods.
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3.1 Introduction

Studying the substructure of a large-scale network, e.g., its subgraphs, is an efficient
way to understand and analyze the network. Recently, a number of studies on
network subgraphs for various network applications have been reported. Ugander
et al. [1] treated subgraph frequency as a local property in social networks and
found that subgraph frequency can provide deep insights for identifying both social
structure and graph structure in a large network. Except for subgraph frequency
statistics, Benson et al. [2] developed a corresponding embedding representation
through Laplacian matrix analysis method. Moreover, Wang et al. [3] designed
an incremental subgraph join feature selection algorithm, which forces graph
classifiers to join short-pattern subgraphs so as to generate long-pattern subgraph
features. Deep learning methods for graphs achieve remarkable performance on
many network analysis tasks. Yang et al. [4] proposed a NEST method, which
combines the motifs and convolutional neural network. Recently, Alsentzer et
al. [5] introduced a SUB-GNN to learn disentangled subgraph representations by
embedding subgraphs into the GNNs, which achieves considerable performance
gains on subgraph classification.

The studies mentioned above try to reveal subgraph-level patterns, which can
be considered as network building blocks with particular functions, to capture
mesoscopic structures. However, most of them ignored the interactions among these
subgraphs, which could be of particular importance to represent the global structure
at the subgraph level. In order to address this issue, Xuan et al. [6] proposed a
method to establish Subgraph Networks (SGNs) of different orders. It is expected
that such SGNs can capture the structural features in different aspects and thus
may benefit the follow-up tasks, such as network classification. The details of
constructing SGNs will be further discussed in Sect.3.3. Conceptually, the SGN
extracts the representative parts of the original network and then assembles them to
reconstruct a new network that preserves the relationship among subgraphs. Thus,
this method implicitly maintains the higher-order structures while preserving the
information of local structures.

Notably, the network structure of SGN can complement the original network
and the integration of SGNs’ features will benefit the subsequent structure-based
algorithms design and applications. However, this model can be further improved.
It is observed that the rule to establish SGN is deterministic, i.e., users can generate
only one SGN of each order for a network. This lack of diversity will limit the
capacity of SGN to expand the latent structure space. Besides, when the number of
subgraphs exceeds the number of nodes in a network, the generated SGN can be
even larger than the original network, which makes it extremely time consuming to
process higher-order SGNs, hindering further applications of the SGN algorithm.
On the other hand, it is noted that network sampling can increase the diversity by
introducing randomness, and meanwhile control the scale, providing an effective
and inexpensive solution for network analysis. This feature is complementary to
the SGN model. Wang et al. thus introduce Sampling Subgraph Networks (S?GNs)
through combining sampling strategy and SGN.
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Broad Learning System (BLS) [7] is a single-layer incremental neural network,
which has a good performance in training speed and classification accuracy
therefore offers an alternative way of learning in deep structure. In this chapter,
BLS will be adopted to fully utilize the structural information captured by S?’GN, so
as to enhance the performance of graph classification. The experiments demonstrate
the effectiveness of the method. The main contents of this chapter are summarized
as follows:

* SGN and S’GN are utilized to expand the structural feature space, which
provides more significant and potential features for the analysis of the original
network and benefits the associated algorithms.

e The broad learning system is employed for the first time to fully utilize
the structural information extracted from S?’GNs generated by different sam-
pling strategies, to enhance various graph classification algorithms based on
Graph2Vec and CapsuleGNN.

e The new models are tested on three real-world network datasets, and the
experimental results demonstrate that S>GN together with BLS can indeed
significantly improve the algorithm efficiency.

The rest of this chapter is organized as follows. In Sect. 3.2, some related work
about subgraph networks, network representation, and the broad learning system are
introduced. In Sect. 3.3, the SGN is described and the algorithms for constructing the
1st-order and 2nd-order SGNs are designed. In Sect. 3.4, three sampling strategies
are developed and the construction methods of S?’GN are presented. In Sect. 3.5,
BLS is used as the classifier for the classification framework. In Sect. 3.6, two
feature extraction methods are introduced, and then combined with SGNs and
S”GNs, which are then applied to classify graphs in three real-world datasets. In
Sect. 3.7, the computational complexities of SGNs and S?GNs models are analyzed
and compared. Finally, Sect.3.8 concludes the chapter, with a future research
outlook.

3.2 Related Work

In this section, some necessary background information is provided on subgraph
networks and graph representation methods in graph mining and network science,
with a brief overview of related research on the broad learning system.

3.2.1 Subgraph Networks

Subgraph is a key component in complex networks and graph mining. The structural
interaction among subgraphs also plays an important role in network analysis.
Subgraph network (SGN) [6] is the first model to introduce the notion of subgraph
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interaction, which can capture the latent high-order structural features in the
original network. However, its construction is of high time-complexity. On the
other hand, network sampling is an important part of network mining. Sampling
methods in graph mining have two main tasks: generating node sequences for
subsequent network representation [8§—10] and limiting the scale of the network to
simplify graphs and achieve faster graph algorithms [11, 12]. Sampling methods
can simplify the network while preserving significant structural information, which
is of extreme importance in graph mining. In view of this, as a variant of the SGN,
sampling subgraph network (S?’GN) combined with different sampling strategies
was introduced, which can enhance the performance of graph classification and
reduce the time complexity of the SGN. In this chapter, SGN and S?GN are utilized
to expand the structural space for enhancing the performance of graph classification.

3.2.2 Network Representation

Network representation has received considerable attention in recent years, which
allows the relational knowledge of interacting entities to be stored and accessed
efficiently. The most naive network representation method is to calculate graph
attributes according to certain typical topological metrics [13]. Early graph embed-
ding methods were significantly affected by Natural Language Processing (NLP).
For example, as graph-level embedding algorithms, Narayanan et al. developed
Subgraph2Vec [14] and Graph2Vec [15], which achieve good performances on
graph classification. Graph kernel methods [16, 17] are popular tools to capture the
similarity between graphs where the kernel is equivalent to an internal product in
the associated feature space. Although representing networks well, they generally
have relatively high computational complexity [13], which makes it unrealizable
to process large-scale networks. Graph Convolutional Networks (GCN) process the
obtained information without weighting, i.e., the information of important neighbors
and non-important neighbors will be put into the convolution layer in an unbiased
manner. Later, Graph Attention Networks (GAT) [18] overcome this shortage by
supplementing a self-attention coefficient before the convolution layer. Based on
the newly proposed capsule network architecture, Zhang et al. [19] designed a
CapsuleGNN to generate multiple embeddings for each graph, thereby capturing
the classification-related information and the potential information with respect to
the graph properties at the same time, which achieved good performance.

3.2.3 Broad Learning System

Broad Learning System (BLS) [7, 20, 21] is a single-layer incremental neural
network based on the random vector function-link neural network (RVFLNN),
which aims to offer an alternative way of learning in deep structure. Chen et al. [7]
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showed that BLS outperforms the existing deep structure neural networks in terms of
training speed. Indeed, compared with other multi-layer perceptron (MLP) training
methods, BLS has a promising performance in classification accuracy and learning
speed. In view of this advantages, BLS has found many applications in various
fields. For example, Gao et al. [22] presented an incremental BLS for event-
based object classification, which demonstrated that increasing the broad network
by adding feature nodes and enhancement nodes is effective for asynchronous
event-based data and provides an alternative way to deal with neuromorphic
cameras. Chen et al. [23] designed a deep-broad learning system for traffic flow
prediction, which increases the accuracy of traffic flow prediction, and maintains
low complexity and running time. To date, BLS has been widely applied in the filed
of computer vision but rarely in graph data mining. In this chapter, BLS is used
for network analysis task in combination with S?’GNs. It will be shown that BLS
achieves good performances in graph classification.

3.3 Subgraph Networks

To be self-contained, SGN is first reviewed, followed by the 1st-order SGN (SGN(D)
and 2nd-order SGN (SGN(2)) construction algorithms.

Subgraph network (SGN) maps the links in the original network into the nodes in
the SGN, thereby transforming the node-level original network into a subgraph-level
network.

Definition 1 (Network) Let G(V, E) be an undirected network, where V and
E C (V, V) respectively denote the nodes and links in the network. The element
(vi, vj) € E denotes an unordered pair of nodes v; and v, i.e.,(vi, v;) = (v}, Vi),
fori,j =1,2,3,..., N, where N is the number of nodes in the network.

Definition 2 (Subgraph) For a network G(V, E) and a subgraph g; = (V;, E;),
where g; € G ifandonlyif V; € V and E; C E. Denote the sequence of subgraphs
asg={gi CGli=1,2,...,n},n <N.

Definition 3 (Subgraph Network) Consider an undirected network G(V, E), and
a SGN G* = f(G), which is a mapping from G to G*(V*, E*), with the nodes and
links denoted by V* = {g;|j =0, 1,...,n}and E* C (V*, V*), respectively. Two
subgraphs g; and g; are connected if they share some common nodes or links in the
original graph,i.e., V;NV; # g or E;NE; # ¢. Moreover, an element (g;, g;) € E*
is an unordered pair of subgraphs g; and g;,i.e., (g, g;)=(gj, &) i =1,2,...,n,
withn < N.

According to the above definitions [6], one can actually find that SGN is derived
from a higher-order mapping of the original network. Agarwal et al. [24] discussed
the problem of graph representation in the domain with higher-order relations,
where the node set is constructed as a p-chain, corresponding to points (0 chain),
lines (1 chain), triangles (2-chain) and so on. Here, similarly, the SGN constructs
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the subgraphs as 1st-order, 2st-order, etc. For clarity, the following are three steps
in building a SGN:

» Extract subgraphs. The first step is extracting subgraphs from the original
network. The network has rich subgraph structures, some of which appear
frequently, such as motifs [25].

* Choose subgraph blocks. The second step is choosing appropriate subgraph
blocks. Generally, a subgraph should not be too large, otherwise the SGN may
only contain a very small number of nodes, which makes subsequent analysis
less significant.

e Construct the SGN. The final step is constructing the SGN by utilizing the
subgraph blocks. After extracting enough subgraphs from the original network,
the key issue is to define rules for building SGN and establish connections
between these blocks. Here, for simplicity, consider two subgraphs, which are
connected if they share the same node or link in the original network.

In this chapter, the most basic subgraphs (that is, lines and open triangles) are
selected as subgraphs because they are simple and common in most networks.

3.3.1 First-Order SGN

From the 1st-order SGN, denoted as SGN(, one can select a line namely a link
as the subgraph to construct the SGN. The 1st-order SGN is also called a line
graph [26].

The process of constructing SGN!) from a given network is shown in Fig.3.1.
In this example, the original graph has 6 nodes connected by 6 links. First, one
extracts lines as subgraphs and labels them with their corresponding terminal nodes.
Then, one treats these lines as nodes in SGN, and connects them according to their
labels, i.e., two lines are connected if they share the same terminal node, as shown
in Fig. 3.1b. Finally, one obtains the structure of SGN with 6 nodes and 9 links as

@ (b) ©

Fig. 3.1 The process to build SGN» from the original network: (a) the original graph, (b) extract-
ing lines and establishing connection among these lines, (c) the structure of SGN»



3 Broad Learning Based on Subgraph Networks for Graph Classification 55

Algorithm 1: Constracting first-order SGN

Input: A network G(V, E) with node set V and link set £ C (V x V).
Output: First-order SGN, denoted by G (Vy, E}).

1 Initialize a node set V; and a link set Eq;

2 for each node u € V do

3 Obtain the neighbors set I” of u;

4 for each node v € V do

5 A temporary link L = sorted pair of nodes set(u, v);

6 Regard link L as a new node in the first-order SGN;

7 Append L to node set Vv,

8

end
9 fori,j e Vandi # jdo
10 Append the link (i, j) to Ey;
11 end
12 Append Vto Vi;
13 end

14 return G(Vy, E1);

shown in Fig. 3.1c. The pseudocode for constructing SGN! is given in Algorithm 1.
The input of the algorithm is the original network G(V, E), and the output is the
constructed SGNW | denoted as G1(V1, E1), where V| and E; represent the nodes
and links in SGN, respectively.

3.3.2 Second-Order SGN

Compared with lines, triangles can provide more insights about the local structure of
the network. For example, Schitberg et al. [27] studied the evolution of triangles in
the Google+ online social network, where some valuable information was obtained
during the appearance and pruning of various triangles.

Now, construct a higher-order subgraph by considering the connection pattern
between three nodes. Compared with two nodes, the connection mode between three
nodes is more diverse. Here, only the connected subgraphs are considered, and the
subgraphs with less than two links are ignored. Here, the open triangle is defined as
a subgraph to establish a 2nd-order SGN, denoted by SGN®. Second order means
that there are two links in each open triangle, and if two open triangles share the
same link, the two open triangles are connected in SGN®. Note that the same link
instead of the same node is used here to avoid getting a very dense SGN®. This is
because, usually, dense networks with higher connection probability of each node
pair tend to provide less discriminative information for local structures.

The construction process from SGN(V to SGN® is illustrated by Fig.3.2. In
the line graph SGN(), further extract lines to obtain hollow triangles as subgraphs,
and mark them with the corresponding three nodes, as shown in Fig. 3.2b. Finally, an
SGN® with 8 nodes and 15 links is obtained, as shown in Fig. 3.2c. The pseudocode



56 J. Wang et al.

(@ (b) (©

Fig. 3.2 The process to build SGN® from the first-order subgraph network: (a) SGN() in
Fig.3.1, (b) extracting lines and establishing connections among these lines, (c) the structure of
SGN®

Algorithm 2: Constracting second-order SGN

Input: A network G(V, E) with node set V and link set £ C (V x V).
Output: Second-order SGN, denoted by G2 (V2, E»).

1 Initialize a node set V, and a link set E»;

2 for each node u € V do

3 Obtain the neighbors set I” of u;

4 The set of all node pairs in the neighbor collection r;

5 for each node pair (vi, v2) € Fdo

6 A temporary link L = sorted pair of nodes set(u, vy, v2);

7 Regard link L as a new node in the first-order SGN;

8 Append L to node set V;

9

end
10 fori,j e Vandi # jdo
11 Append the link (i, j) to E;
12 end
13 Append Vo Va;
14 end

15 return G,(Vs, E»);

for constructing SGN® is given in Algorithm 2. The input of the algorithm is the
original network G(V, E), and the output is the constructed SGN®), represented
by G2(Va, E3), where V> and E, represent the node and link sets in SGN®,
respectively.

As SGN gradually maps to the higher-order network, one can obtain more and
richer feature information. SGN(!) can reveal the topological interaction between
the links of the original network. Fu et al. [28] adopted SGN to predict the link
weights of given networks. SGN® is obtained by further iterative mapping based
on SGN | 5o the second-order information of the nodes can be captured. Higher-
order SGNs will contain more hidden information, but these hidden information
may play a smaller role in subsequent applications. Therefore, here the focus is on
the SGNss of the first two orders.
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3.4 Sampling Subgraph Networks

Next, the S?GN is reviewed. S?GN is proposed as a variant of SGN through
introducing sampling strategies into the SGN algorithm. In this section, several
sampling strategies are described, and the construction of S?’GN is discussed.

3.4.1 Sampling Strategies

Network sampling can simplify a graph while preserving its significant structural
information, which is of extreme importance in graph data mining. Here, three
sampling algorithms are reviewed: biased walk, spanning tree and forest fire.

3.4.1.1 Biased Walk (BW)

Biased walk sampling is a very common sampling strategy. Here, the walking
mechanism of Node2Vec [29] is adopted to preserve the homogeneity and structure
of nodes by integrating depth-first search (DFS) and breadth-first search (BFS) (as
shown in Fig. 3.3a). In the mechanism of Node2Vec, it defines a 2nd-order random
walk, which is guided by the two parameters p and g (as shown in Fig. 3.3b). To
start, assume that one walks from node A to node B and then needs to determine the
next step. The transition probability P from node B to node C is then defined as

},,d(A,C) =0
P.c) = qu(A, c)=11, diacy=1
;,d(A,C) =2

(@) (b)

Fig. 3.3 (a) BFS and DFS walk strategies from node 3. (b) Illustration of evaluating the next step
out of node B. Edge labels indicate search biases P
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where d 4, c represents the shortest distance between nodes A and C, and its value
must be in {0, 1, 2}. The pseudocode for biased walk is given in Algorithm 3.

Algorithm 3: Biased walk sampling

Input: A network G(V, E) with node set V and link set E C (V x V).
Qutput: The substructure G (Vp, Ep).

1 Initialize a source node vy € V, added into Vp;
2 Append vy to Vp;

3 while walk length L do

4 v=Vp[-1];

5 V» = GetNeighbors(v, G);

6 Unexr = AliasSample(V,, 7);

7 Append vyexr to Vi

8 Append (v, Vpext) 10 Ep;

9 end

o
=

return G, (Vp, Ep);

3.4.1.2 Spanning Tree (ST)

A spanning tree [30] is defined as a subgraph of a connected tree graph G, which
connects all the nodes together with minimum possible number of edges. Here, since
the datasets used are all unweighted networks, the largest spanning tree is equivalent
to the smallest spanning tree. In this chapter, the classical Kruskal algorithm [31] is
used to generate spanning trees (as shown in Fig. 3.4) and the weight values of the
links are all set to one.

The Kruskal algorithm is a greedy algorithm for generating spanning tree as
follow:

» Step 1. Create a set of trees .%# where each node in the graph belongs to a tree;
« Step 2. Create a set of edges & including all edges of the graph;

(@ (b)

Fig. 3.4 Obtaining a spanning tree. (a) Original network. (b) Spanning tree structure
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e Step 3. While & # Jand |.F| # 1

— select any edge from &;

— if this edge connects two different trees, then combine it with the two trees to
generate a new tree and add it into .%;

— otherwise discard this edge;

e Step 4. The .% has a minimum spanning tree at the termination of the iteration.

3.4.1.3 Forest Fire (FF)

Forest fire sampling was first proposed by Leskovec and Faloutsos in 2006 [11].
Here, a specific algorithm is introduced for forest fire sampling. Given a network,
first randomly select a node vy, and then generate a random number X, following
the geometric distribution with mean p /(1 — ps). Here, the parameter p s is called
the forward burning probability (set to 0.2 [11]). Then, X edges with node vy as
terminal node will be selected, where the another terminal node of each edge has
not been visited. One can use any method of generating random numbers to find
the unvisited nodes with the current burning nodes as source nodes, one by one,
until enough nodes are burned. To avoid duplication, nodes cannot be visited twice
during the forest fire sampling method. If the fire dies, select a node randomly to
restart again. The pseudocode for forest fire sampling is given in Algorithm 4.

Algorithm 4: Forest fire sampling

Input: A network G(V, E) with node set V and link set £ C (V x V), the forward burning
probability p.
Output: The substructure G(V;, Ej).
Initialize a neighbor list N and a temporary variable G(V;, E;);
Randomly choose the first node vo;
Generate X following the geometric distribution with mean p /(1 — py);
n = The number of vy’ neighbor;
if X < n then
N <« Sort the neighbors of v according to the degree and choose the top X neighbors;
end
for node T in N do
if T in Vi then
continue;
else
Append the node T to Vi;
Append the link (7', vg) to Ej;
Forest fire recursive function(G, ps, T);
end
end
return G, (Vs, Ey);

XTI U AW -

O T G
NN U RWN =D
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Using any of the above three sampling strategies, one can map the original
network into many substructures. As a result, more characteristic information in
the network can be abstracted, which also provides favorable preconditions for
downstream algorithms.

3.4.2 Construction of S>\GN

Most networks in the real world have complex structures. Therefore, the generated
SGN s are typically of large-scale and even denser than the original networks. This
will not only reduce the efficiency of the algorithms, but also introduce some
“noise” into structures, which will reduce the accuracy of the algorithms. In view
of this, the original SGN model is optimised to construct S>GN. In particular,
multiple sampling strategies are introduced, filtering the original complex network
as substructures, thereby establishing a new SGN. The pseudocode for constructing
S?GN is given in Algorithm 5. Generally, the S?’GN algorithm is divided into
three parts: selecting source node, sampling substructure and constructing subgraph
network. The algorithm steps are described as follows:

* Selecting source node. There are many ways to select the source node: (i)
randomly selecting a node as the source node; (ii) selecting an initial node
according to the importance of the node. In this chapter, the second method is
adopted to better capture the key structure of a network.

e Sampling substructures. After determining the initial source node, a sub-
structure can be obtained by performing a certain sampling strategy to extract
the main context of the current network. According to different sampling strate-
gies, various sampling substructures can be generated, and the rich structural
information in the current network can be obtained.

+ Constructing S?’GN. The sampling substructure is used as input to construct
a subgraph network. Note that sampling and SGN construction are repeated
interactively, so as to obtain higher-order S2GNs. That is, each time the current
network is mapped to a subgraph network, and then a sampling operation is
performed to obtain various relatively simple sampling substructures.

3.5 BLS Classifier Based on S2GN

3.5.1 BLS Classifier

BLS [7, 20] is proposed as an alternative method of deep learning network. It is
designed such that mapping features are input into RVFLNN. As shown in Fig. 3.5,
a specific illustration of BLS is given, which will be used as the classifier of the
network.
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Fig. 3.5 The framework of BLS classifier

Algorithm 5: Constracting sampling subgraph network

Input: A network G(V, E) with node set V and link set E C (V x V), the order of SGN T,
sampling strategy f;(-), sampling walks L.
Output: Sampling subgraph network, denoted by G’(V’, E’).
1 Initialize a temporary variable G’ = G;
2 while 7T do
3 G’ = GetMaxSubstracture(G');
Source node o = NodeRanking(V");
Initial sampling v; = 0,W, <« [0],W, < 0 ;
fori =1t0oL —1do
Sampling link ¢; = f;(v;);
Update current node v; = dst(e;);
Append v; to Wy, e; to W,;

D=J-CHE BN WU B N

10 end

11 Vi < Wy, Eg < W,

12 Gyen =SGN Algorithms(Gy);
13 G’ < Relabel (Gygn);

4 T=T-1;

15 end

16 return G'(V', E');

In this process, we treat the training features as the graph input X, and then
transform X into n random feature spaces by feature mapping:

Zi=¢pXW, +B,)i=1...n 3.1
where the weights W;; and the bias term §;; are generated randomly with appropri-

ate dimensions, n is the number of groups of mapped features, and ¢(-) indicates
the linear mapping.
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Here, denote the feature space of training samples by Z" = [Zy, Z2, ..., Z,].
Then, the jth group of enhancement nodes is defined by

Hj =&(Z"W,, +B,),j=1.2,....m (3.2)

where W;; is the enhancement weight, B,; is the bias term, and () is a nonlinear
activation function.

Similarly, denote the enhancement layer by H" = [Hy, Ha, ..., Hy]. Thus, the
form of output Y is as follows:

Y =[Z", H"]W = AW (3.3)

where A = [Z", H™] are the features, combining the enhancement nodes and
feature nodes, and W is the weight matrix that connects the feature nodes and
enhancement nodes to the output layer. The W should be optimized by

minw||Y — AW||3 + Al|W||3 (3.4)

where X is a regularization coefficient. Then, through a simple equivalent transfor-
mation [7], one finally gets the following formula:

W=ATA+r)"'ATY (3.5)

Now, one has the trained model with the weight matrix W, therefore can test its
performance using the rest of the dataset. In fact, there are several hyperparameters
in this model, such as the number of feature nodes k, the number of enhancement
nodes m, the regularization coefficient A and the shrink coefficient s of £(-). In the
experiment, the regularization coefficient A is set to 27! and shrink coefficient s to
0.8. For MUTAG, PTC, and PROTEINS, set the number of feature nodes k as 50, 80,
and 100, and the number of enhancement nodes m as 40, 60, and 80, respectively.
For different samples, the optimal parameters are set near the above parameters.

3.5.2 Classification Framework

According to the above setting, one can design a framework for graph classification
by combining S?’GN with the BLS classifier, as shown in Fig. 3.6.

To begin with, construct three S?’GNs according to the method described in
Sect.3.4.2, i.e., S’GN@, S2GN and S?GN® | and then map them into different
feature spaces. By graph feature extraction methods, one can get the feature
representations of S2GNs and then fusion them into X = [Xo||X1]|X2], where
[a||b] means to merge vector a and vector b. The fused vector X can be regarded as
the input of the BLS classifier as shown in Fig. 3.5. Here, the same sampling strategy
and feature extraction method are adopted for conducting classification. Since the
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same original network can generate various S>GNs by different sampling strategies,
X contains abundant structural information of different aspects. Therefore, this
framework combining S?GNs with BLS can enhance the performance of the original
network classification.

3.6 Experiment

3.6.1 Graph Classification

The performance of the above framework on graph classification is evaluated
by simulation. Graph classification is one of the most important data mining
tasks, which has been widely used in the field of biochemistry, such as protein
classification and molecular toxicity classification. Typically, graph classification
focuses on transforming discrete graphs into numerical features. One can use some
machine learning algorithms to effectively classify various graphs.

Consider graph G = (V, E) from the set 4 = {G;}, where i = 1,2,3..., N.
The node and edge collections are V. = {vj,v2,v3,...,v,} and E =
{e1,e2,e3,...,e,} € (V x V), respectively. Each graph G has a corresponding
category label y € €, where € = {1,2, 3, ..., k} is the set containing k different
labels. The aim of graph classification is to find a mapping function f : 4 — €
to predict the label of each graph in ¢. Generally, one can train the model using
the training set with known category labels and evaluate its performance using the
test set with unknown labels. By comparing the output y = f(G) with the true test
label y, one can evaluate the classification algorithm by accuracy.

To date, a large number of graph classification methods have been proposed, like
graph embedding method Graph2Vec and deep learning method CapsuleGNN. In
this section, a brief introduction of these two network representation methods is
given, and then some experiments on three datasets are performed for evaluating the
performances of both SGN and S?GN models.

3.6.2 Datasets

Three datasets, MUTAG, PTC and PROTEINS, will be used for graph classification
experiments. The basic statistics of these datasets are presented in Table 3.1.

* MUTAG [32] dataset is about heteroaromatic nitro and mutagenic aromatic
compounds, with nodes and links representing atoms and the chemical bonds
between them, respectively. They are labeled according to whether there is a
mutagenic effect on a special bacteria.

e PTC [33] dataset includes 344 chemical compound graphs whose labels are
determined by their carcinogenicity for rats.
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Table 3.1 Basic statistics of the 3 datasets. #Graphs is the number of graphs. #Classes is the
number of classes. #Positive and #Negative are the numbers of graphs in the two different classes

Dataset #Graphs #Classses #Positive #Negative
MUTAG 188 2 125 63
PTC 344 2 152 192
PROTEINS 1113 2 663 450

» PROTEINS [34] dataset comprises of 1113 graphs. The nodes are Secondary
Structure Elements (SSEs) and the links are neighbors in the amino-acid
sequence or in the 3D space. These graphs represent either enzyme or non-
enzyme proteins.

3.6.3 Network Representation

Network representation is a method of mapping graphs into vectors while retaining
as many topological features as possible. Here, two network representation methods
are used to extract graph features, including graph embedding method Graph2Vec
and deep learning method CapsuleGNN.

e Graph2Vec: This is the first unsupervised embedding approach for an entire net-
work, which is based on the extending word-and-document embedding technique
that has shown great advantages in NLP. Graph2Vec establishes the relationship
between a network and the rooted subgraphs using a similar model to Doc2Vec.
Graph2Vec first extracts rooted subgraphs and provides corresponding labels into
the vocabulary, and then trains a skipgram model to obtain a representation of the
entire network.

e CapsuleGNN: This method is inspired by CapsNet [35], which utilizes the
concept of capsules to overcome the shortcoming of existing GNN-based graph
representation algorithms. CapsuleGNN extracts node features in the form of
capsules and uses routing mechanisms to capture important information at the
graph level. The model generates multiple embeddings for each graph in order to
capture graph properties from different aspects.

For Graph2Vec, the embedding dimension is adopted following [15]. Graph2vec
is based on the rooted subgraphs adopted in the WL kernel. The parameter height
of the WL kernel is set to 3. Since the embedding dimension is predominant
for learning performances, a commonly-used value of 1024 is adopted. The other
parameters are set to defaults: the learning rate is set to 0.5, the batch size is set to
512 and the epochs is set to 1000. The default parameters are used for CapsuleGNN
and the multiple embeddings of each graph are flattened as the input.
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3.6.4 SGN for Graph Classification

As described in Sect.3.3, the proposed SGNs can be used to expand structural
feature spaces. In order to study the effectiveness of the 1st-order and 2nd-order
SGNs, i.e., SGND and SGN®@ | the classification results were compared based on
different numbers of networks, i.e., SGN©@ SGN®, SGN@® SGN©-D sGN©-2)
and SGN®-1.2) Without loss of generality, the well-known logistic regression is
chosen as the classification model. Meanwhile, for each feature extraction method,
the feature space is first expanded by using SGNs, and then the dimension of the
feature vectors is reduced to the same value as that of the feature vector obtained
from the original network using PCA in the experiments, for a fair comparison. Each
dataset is randomly split into ninefolds for training and onefold for testing. Here, the
F1-Score is adopted as the metric to evaluate the classification performance:

2P R
F = , 3.6
P+ X (5-6)
and the Gain can be calculated by
F70.1.2) _ z(0)
Gain = x 100% 3.7

F0)

where & and Z are the precision and recall, respectively. To exclude the random
effect of the fold assignment, experiment is repeated for 500 times and then
the average Fj-Score and its standard deviation are recorded. The results for
Graph2Vec and CapsuleGNN methods are shown in Tables 3.2 and 3.3, respectively.

From Tables 3.2 and 3.3, one can see that the original network appears to
provide more structural information. The classification model based on SGN©
performs better, with a higher Fi-Score, than those based on SGN® or SGN@,
This is reasonable because there is information loss in the processes of constructing
SGNs. More interestingly, the performance of the classification model based on two
networksi.e., SGN©-D and SGN©-2) , is better than the classification model based on

Table 3.2 Classification results on MUTAG, PTC and PROTEINS, in terms of Fj-Score, based
on Graph2Vec method with the combinations of SGNs of different orders, the bold values are the
best results

Dataset MUTAG PTC PROTEINS

Original 83.154+9.25 60.17 + 6.86 73.30 +2.05
SGN®D 63.16 £ 4.68 56.80 £ 5.39 60.27 £ 2.05
SGN®@ 68.95 + 8.47 57.3543.83 59.82 +4.11
SGN©:-D 83.42 £ 5.40 59.03 +3.36 7412 £+ 1.57
SGN(©2) 81.32 +3.80 61.76 £3.73 73.09 £ 1.28
SGN©.1.2) 86.84 +£5.70 63.24 +6.70 74.44 £ 3.09

Gain 4.44% 5.10% 1.56%
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Table 3.3 Classification Dataset ~ MUTAG PTC PROTEINS
results on MUTAG, PTC and L.

PROTEINS, in terms of Original ~ 86.32+7.52 62.06+4.25 75.89+3.51
Fy-Score, based on SGN® 83.68+8.95 61.76+5.00 74.64+3.55
CapsuleGNN method with SGN® 82.63 £7.08 58.824+3.95 73.39+6.03
the combinations of SGNs of SGNOD 87374855 63.53+4.40 76.25+3.53
dferem Orfler;’ the bOIld SGN©2  8789+529 6220+6.14 73.00+3.17
values are the best results SGNO1D) 89474744 64124367 7634 +4.13

Gain 3.65% 2.19% 0.59%

a single network in most cases, which prove that SGNs can indeed provide the latent
and significant structural information. Furthermore, when the three single networks
are considered together, i.e., SGN(©.1.2), they can achieve the best performance in
the classification.

3.6.5 S2GN for Graph Classification

In this experiment, the network in the dataset is divided to ten equal parts, two of
which are selected as the test set, and the remaining eight are used as the training
set. The above algorithms are used to generate S’GNs of different orders, and then
Graph2Vec and CapsuleGNN methods are adopted to learn the feature representa-
tions of S?’GNs. Finally, the BLS method is applied for classification and to calculate
the F1-Score. In order to avoid accidental sampling, each sampling strategy was
carried out 10 sampling averaging. Based on Graph2Vec and CapsuleGNN methods,
the obtained experimental results are shown in Tables 3.4 and 3.5, respectively.
The influence of each sampling method on the model is compared between the
two feature extraction methods. It is found that, under the same feature extraction
method, each sampling strategy has different advantages and disadvantages, which
may be related to the specific network structure in the dataset. With the two feature
extraction algorithms, the dataset MUTAG has the best classification effect under
biased walk. Here, the results based on three sampling methods are compared
with those based on the original method. It is found that the improved sampling
subgraph network algorithm can maintain the original accuracy and even outperform

Table 3.4 Classification Dataset MUTAG PTC PROTEINS
results of three sampling

stratogios in MUTAG, PIC Original  83.154£925 60.17+6.86 73.30 +2.05
and PROTEINS, in terms of S2GN-BW 8680 £5.02 62.90+2.19 75.44 +3.85
Fi-Score, based on S2GN-ST  82.03+3.76 62394636 74.33+2.86
Graph2Vec method, the bold S2GN-FF  83.33+6.13 62.46+5.17 73.77+2.15
values are the best results BLS-S2GN 83.63+6.84 6328+6.06 74.92+ 258

Gain 0.58% 5.17% 2.21%
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Table 3.5 Classification Dataset MUTAG PTC PROTEINS
results of three sampling

strategics in MUTAG, PTC Original  86.32+£7.52 62064425 75.80+3.51
and PROTEINS, in terms of S2GN-BW  91.84+5.00 66.06+334 77.47+235
Fi-Score, based on S2GN-ST  89.21£5.05 63.50+3.71 76.85+2.54
CapsuleGNN method, the S2GN-FF  86.10+532 6577 £4.42 7637 +1.90
bold values are the best BLS-S2GN 91.63+2.89 66.10+6.37 78.32+2.94
results Gain 6.39% 6.50% 3.20%

the optimal result of the original algorithm. Experiments show that the variance
of all accuracy on the dataset is reduced. For example, under the condition
of CapsuleGNN feature extraction for the MUTAG dataset, the highest average
accuracy is around 86.32%, and the variance is 0.0752. While using BLS-S?GN, the
highest average accuracy can reach 91.84%, and the variance is reduced to 0.0289.
All cases show that the newly proposed classification model can be combined with
different feature extraction methods, which can further improve the accuracy and
stability of classification.

3.7 Computational Complexity

Now, it is to analyze the computational complexity in building SGNs. Denote by
|V| and | E| the numbers of nodes and links, respectively, in the original network.
The average degree of the network is calculated by

1 VI

2|E|
K = ki = , (3.8)
14 ; Y

where k; is the degree of node v;. Based on Algorithm 1, the time complexity in
transforming the original network to SGN(!) is

A =O0K|VI+|EP) = O(EP* +|E|) = O(E*). (3.9

Then, the number of nodes in SGN) is equal to |E| and the number of links is
Zl‘.v‘l ki2 — |E| < |E|> — |E| [26]. Similarly, one can get the time complexity in

transforming SGNV to SGN®, as
Fh < O(|E)* — |ED*) = O(E"Y). (3.10)

Meanwhile, the computational complexity of these methods is evaluated in terms
of the average computational time of SGN and S?GN generated by the three
sampling strategies on the three datasets. The results are presented in Table 3.6,
where one can see that, overall, the computational time of S2GN is much less than
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Table 3.6 Average S2GN

computational time to .

establish SGN and S2GNs by Time (Seconds) ~ SGN . Bw ST~ FF

the three sampling strategies MUTAG 1.58 x 10 0.252  0.090 0.382

on the three datasets PTC 1.93 x 10> 0.804 0.607  0.985
PROTEINS 320 % 10° 1161  1.625  3.697

that of SGN for each sampling strategy on each dataset, decreasing from hundreds
of seconds to less than 4 s. These results suggest that, by comparing with SGN, the
S%GN model can indeed largely increase the efficiency of the network algorithms.
In fact, it is possible to estimate the time complexity of S?GN model in theory.
For biased walk, consider the 2nd random walk mechanism of Node2Vec, where
each step of a random walk is based on the transition probability «, which can be
precomputed, so the time consumption of each step using alias sampling is &'(1).
The Kruskal algorithm used to generate spanning trees is a greedy algorithm, which
has O(|E|log(]E])) time complexity. Fire forest is an exploration-based method.
The difference between this method and the random walk method is that, when
a node is visited, it will no longer be visited again in the fire forest. It is known
that the computational complexity of SGN" is ¢(|E|?) and that of constructing
SGN®@ is O(|E[*). The S2GN model constrains the expansion of the network scale
and reduces the cost of constructing SGNs to the fixed O(|E |2). Thus, the time
computational complexity .7 of the S’GN model can be calculated as

T < O(Ellog|E| + |EP]) (3.11)

Combining with the different sampling strategies, one can see that the time
complexity of S’GN is much lower than that of SGN.

3.8 Conclusion

In this chapter, after reviewing the notions of SGN and S2GN, the BLS is introduced
to graph data mining. Moreover, a classification framework is introduced that
combines S2GN, feature representation, and BLS to enhance the performance of
graph classification task. SGN and S?GN can generate different higher-order graphs
to capture latent structural information of the original network from various aspects
and expand the feature space. Experiments on three datasets demonstrate that BLS
can fully utilize these latent features to achieve significant improvement in graph
classification. In addition, it is found that, compared with SGN, S2GN has much
lower time complexity, which was reduced by almost two orders of magnitude.
More significantly, combined with BLS, it has competitive performances on graph
classification.
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